Detecting Egocentric Actions with ActionFormer
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Abstract

This report describes our submission to EPIC Kitchens
100 action detection challenge 2022. Our submission builds
on ActionFormer — our previous work on temporal action
localization [15], and integrates latest video features from
SlowFast [7] and ViViT []]. Our solution achieves 21.36
mAP on the validation set and 20.95 mAP on the test set,
outperforms previous best results from the 2021 challenge
by 4.84 absolute percentage points in average mAP, and
is ranked 2nd on the public leaderboard of the 2022 chal-
lenge. Our code is available at ht tps://github.com/
happyharrycn/actionformer._release.

1. Introduction

Temporal action detection seeks to simultaneously local-
ize action instances in time and recognize their categories.
Many prior works have studied action detection in third per-
son videos [2,4,9,10,12,14,16], yet few has focused on ego-
centric videos. Key challenges arise for egocentric action
detection, as manifested in the EPIC-Kitchens dataset [0].
For example, most previous works have considered using
action proposals [9] or anchor windows [ 1 0] to represent ac-
tions in time. An egocentric video, however, often contains
hundreds of action instances from many categories span-
ning from a few seconds to a few minutes, making it diffi-
cult to design proposals or anchors.

Our solution instead considers an anchor-free model
from our previous work [15]. Our work of ActionFormer
presents one of the first Transformer based single-stage
anchor-free model, capable of localizing moments of ac-
tions in a single shot without using action proposals or pre-
defined anchor windows [!5]. ActionFormer adapts lo-
cal self-attention to model temporal context in untrimmed
videos, classifies every moment in an input video, and re-
gresses their corresponding action boundaries.

We explore the integration of different video features in
ActionFormer, including SlowFast [7] and ViViT [!] (used

by the winning team in the 2021 challenge [ 1]). We train
two separate models for detecting the motion in the ac-
tion (defined by verbs) and the active objects (defined by
nouns), and further combine their outputs for action detec-
tion. Our submission achieves 21.36 mAP on the validation
set and 20.95 mAP on the test set, outperforms previously
best results from 2021 challenge by 4.84 absolute percent-
age points in average mAP. Our results are ranked 2nd on
the public leaderboard of 2022 challenge, with a gap of 0.32
average mAP to the top ranked solution.

2. Our Approach

Our solution firsts extract clip-level video features using
pre-trained video backbones. Each clip is thus represented
as a feature vector, and each video a sequence of feature
vectors. This sequence is further used by ActionFormer
for action detection. ActionFormer considers every moment
within the sequence as an action candidate, classifies their
action category, and regress their action boundaries. We
train two separate models to detect motion (verbs) and ac-
tive objects (nouns), and combine their outputs. In what
follows we describe the details of our approach.

2.1. Encoding Video Features

To extract video features, we consider two different
video backbones, including (a) a variant (SlowFast R101-
NL using 3D ResNet 101 with non-local blocks) of the
SlowFast network [7] widely used for video understanding;
and (b) a more recent video Transformer model (ViViT [1])
that has proven to be effective on EPIC-Kitchens dataset [S].
Both backbones are pre-trained on third person videos us-
ing Kinetics-600 [5]. Following [8], we further fine-tune
the backbones on EPIC-Kitchens Action Recognition task,
allowing the models to better adapt to egocentric videos.
The fine-tuned backbones are then used to extract clip-level
video features for action detection.

Fine-tuning on EPIC-Kitchens Action Recognition. Our
first step is to fine-tune SlowFast R101-NL and ViViT for
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Figure 1. Overview of ActionFormer (taken from our paper [15]). Our method builds a Transformer based model to detect action instances
in time by classifying every moment and estimating action boundaries, thereby providing a single-stage anchor-free model for temporal

action localization.

action recognition on the training set of EPIC-Kitchens 100.
e SlowFast R101-NL: We attach a verb and a noun head
to the pre-trained model, and fine-tune all weights on
EPIC-Kitchens. Specifically, we randomly sample 32
frames with a temporal stride of 1 from downsampled
videos (512 x 288 at 30 FPS). The model is fine-tuned
by 30 epochs with batch size 64, weight decay 0.0001,
and initial learning rate 0.01. The learning rates decays
by 0.1 at 20th and 25th epoch. The fine-tuned model
has 51.6% top-1 noun accuracy and 65.3% top-1 verb
accuracy on the validation set with single-crop test.

e ViViT: We take the released model from [8], which
are already fine-tuned on EPIC-Kitchens. Similar to
SlowFast R101-NL, this version of ViViT include sepa-
rate verb and noun heads for classification. The model
reaches 58.9% top-1 noun accuracy and 67.4% top-1
verb accuracy on the validation set with multi-crop test.
We refer to [8] for the training details.

Video Feature Extraction. Given the fine-tuned back-
bones, our next step is to extract clip-level video features
for action detection. For both SlowFast and ViViT, we ex-
tract a feature vector for every clip of 32 RGB frames with a
temporal stride of 8. Optical flow is not used for computing
video features.

e SlowFast R101-NL: SlowFast network is fully convo-
lutional. Thus, we input video frames with a higher res-
olution of 512 x 288, and perform an average pooling
before the classification heads to extract a feature vector
for each clip. The feature vector is of dimension 2304.

e ViViT: ViViT from [8] is trained on a resolution of
320 x 320 with 60 FPS, yet takes every other frames
in the video (temporal stride 2). Altering the input reso-
Iution will require interpolating the learned position em-
beddings. Thus, we downsample the videos to 320 x 569
at 30 FPS, and feed 32 consecutive frames along with 3
horizontal crops each of size 320 x 320. The model pro-
cesses these 3 crops independently, and feature vectors
from the CLS token are further averaged to produce a
768-D clip-level feature.

We experimented with using individual features for ac-
tion detection, yet found that a simple concatenation of the
features yields the best performance.

2.2. Temporal Action Detection with ActionFormer

The extracted video features are further used by our Ac-
tionFormer for temporal action detection. ActionFormer
first embeds each of the clip-level features. The embed-
ded features are further encoded into a feature pyramid us-
ing a multi-scale transformer. The resulting feature pyra-
mid is then examined by shared classification and regres-
sion heads, predicting action candidates at every time step.
Our method is illustrated in Figure 1. We refer the readers
to our paper for more technical details [15].

A Two Stream Model. While it is possible to attach sepa-
rate verb and noun heads in a single ActionFormer model,
we found it helpful to train individual models to detect mo-
tion (verbs) and active objects (nouns) and then combine
their outputs, resembling the key idea of a two stream net-
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BMN [6,9] SlowFast [7]

Verb |10.83| 9.84 | 8.43 | 7.11 | 5.58 | 8.36
Noun |10.31] 8.33 | 6.17 | 447 | 3.35 | 6.53

Action| 6.95 | 6.10 | 5.22 | 4.36 | 3.43 | 5.21

Huang [11] ViViT [1]

Val

Verb |22.92|21.86(20.89|18.33|15.66|19.93
Noun |30.09|27.59(25.81(22.80|19.26|25.11
Action |21.14]20.10{19.02{17.32|15.11|18.53

Ours (ActionFormer [15]) ViViT [1]

Verb |23.23]22.35(21.28|19.69|16.50|20.61
Noun [28.85(27.33|25.52|23.01|18.92(24.73
Action |22.48121.39|20.24{18.57|16.20| 19.78

Verb |25.98|24.80(23.26(21.22|18.08|22.67

Ours (ActionFormer [15]) | SlowFast [7]+ViViT [1]| Noun |[30.49|29.14|26.88|24.77|20.70|26.40

Action|23.87|22.91|21.70|20.28|18.04 | 21.36

Verb |11.10] 9.40 | 7.44 | 5.69 | 4.09 | 7.54

BMN [6,9] SlowFast [7] Noun |11.99] 8.49 | 6.04 | 4.10 | 2.80 | 6.68

Action| 6.40 | 537 | 441 | 3.36 | 2.47 | 4.40

Verb |22.77|22.01{19.63(17.81|14.65|19.37

Test Huang [11] ViviT [1] Noun |26.44|24.55(22.30|19.82|16.25|21.87

Action|18.76|17.7316.26(14.9112.87|16.11

Verb |26.97|25.90(24.21(21.77|18.47|23.46

Ours (ActionFormer [15]) | SlowFast [7]+ViViT [1]| Noun |28.61|27.14|24.92(22.13|18.69|24.30

Action |23.90|22.98|21.37|19.57|16.94|20.95

Table 1. Results of action detection on EPIC Kitchens 100. All results on the test set are evaluated on the test server. Our method achieves
an average mAP of 20.95 for the 2022 challenge, surpassing previous best results from [11].

work [13]. A possible explanation is that doing so facilities
implicit model ensemble. Specifically, each stream of Ac-
tionFormer predicts the classifications scores (p(verb) or
p(noun)) and regresses the temporal boundaries (d(verd)
or d(noun)) at each time step on the feature pyramid. We
combine the outputs by using

plaction) = p(verb)® p(noun)=),

1
d(action) = wd(verdb) + (1 — w)d(noun), )

where @ = 0.45 (selected based on validation results)
is used to “calibrate” the classification scores, and w =
p(verd)/(p(verb) + p(noun)) is used to re-weighted the
regression outputs.

Implementation Details. Our model takes the concate-
nated features (3072-D for each clip with a temporal stride
of 8) as the input, uses 6 levels of feature pyramid, and
samples a sequence with maximum length of 4608 steps
(approximately 20 minutes) for each video during training.
The training epochs is 12 and 16 for verb and noun, respec-
tively, as we observed overfitting issues with pro-longed
training schedule. The results are further processed using
multiclass SoftNMS [3]. We set the maximum predictions
of each video to 15,000. Our code will be released in our
public repository available at https://github.com/
happyharrycn/actionformer_release.

3. Action Detection Results

We now present our results on EPIC Kitchens dataset.

Dataset. Our results are reported on EPIC Kitchens 100
action detection dataset [6]. EPIC Kitchens 100 is the
largest egocentric action dataset with more than 100 hours
of videos from 700 sessions capturing cooking activities
across several kitchen environments. The dataset has an av-
erage 128 actions from a large array of categories per ses-
sion. Each action is defined as a combination of a verb (ac-
tion) and a noun (active object).

Evaluation Protocol and Metrics. We follow the official
splits of train, validation and test set. When reporting results
on validation set, we train our model on the training set.
For the results on test set, we combine both training and
validation sets for training and evaluate the results using the
official server. Our results are reported for noun, verb and
action, respectively. The metrics include the mean average
precision (mAP) at different tloU thresholds [0.1:0.1:0.5],
as well as the average mAP , following [6].

Results. Table | summarizes our results on on the valida-
tion and test set. When using the same ViViT backbone and
evaluated on the validation set, our method reaches an av-
erage mAP of 19.73% for action detection in comparison to
the previous best result of 18.53% from Huang et al. [11]
(also last year’s winning solution). Adding SlowFast fea-
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tures further improves the average mAP to 22.67%, 26.40%,
and 21.36% for verb, noun, and action, respectively, largely
outperforming the previous best [1 1] by 2.74%, 1.29%, and
2.83%. On the test set, our final model achieves 23.46%,
24.30%, and 20.95% mAP on verb, noun, and action, which
is 4.09%, 2.43% and 4.84% higher than the previous best
results [11]. Our average mAP for actions is slightly lower
than the best ranked solution in the 2022 challenge, with a
small gap of 0.32%.

4. Conclusion

In this report, we presented our solution using Action-
Former and latest video backbones for temporal action de-
tection in egocentric videos. Notwithstanding its simplic-
ity, our approach has demonstrated strong performance on
the EPIC Kitchens dataset, ranked 2nd on the public leader-
board of 2022 challenge, surpassing previous best results
and with a gap of 0.32 average mAP to the top ranked so-
lution. We hope that our model can shed light on tempo-
ral action localization and egocentric vision, and the more
broader problem of video understanding.

References

[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold,
Chen Sun, Mario Lucié, and Cordelia Schmid. ViViT:
A video vision transformer. In Int. Conf. Comput. Vis.,
2021. 1,3

Yueran Bai, Yingying Wang, Yunhai Tong, Yang
Yang, Qiyue Liu, and Junhui Liu. Boundary con-
tent graph neural network for temporal action proposal
generation. In Eur. Conf. Comput. Vis., volume 12373
of LNCS, pages 121-137, 2020. 1

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S Davis. Soft-NMS—improving object detection
with one line of code. In Int. Conf. Comput. Vis., pages
5561-5569, 2017. 3

Shyamal Buch, Victor Escorcia, Bernard Ghanem, and
Juan Niebles Carlos. End-to-end, single-stream tem-
poral action detection in untrimmed videos. In Brit.
Mach. Vis. Conf., pages 93.1-93.12, 2017. 1

Joao Carreira and Andrew Zisserman. Quo vadis,
action recognition? a new model and the Kinetics
dataset. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 4724-4733, 2017. 1

Dima Damen, Hazel Doughty, Giovanni Maria
Farinella, Antonino Furnari, Evangelos Kazakos, Jian
Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, et al. Rescaling egocentric vision. arXiv
preprint arXiv:2006.13256, 2020. 1, 3

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik,
and Kaiming He. SlowFast networks for video recog-

(2]

(3]

(4]

(5]

(6]

(7]

[8

[9

[15

—_—

—

—

—_

—

nition. In Int. Conf. Comput. Vis., pages 6202—-6211,
2019. 1,3

Ziyuan Huang, Zhiwu Qing, Xiang Wang, Yutong
Feng, Shiwei Zhang, Jianwen Jiang, Zhurong Xia,
Minggian Tang, Nong Sang, and Marcelo H Ang Jr.
Towards training stronger video vision Transform-
ers for EPIC-Kitchens-100 action recognition. arXiv
preprint arXiv:2106.05058, 2021. 1, 2

Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei
Wen. BMN: Boundary-matching network for tempo-
ral action proposal generation. In Int. Conf. Comput.
Vis., pages 3889-3898, 2019. 1, 3

Fuchen Long, Ting Yao, Zhaofan Qiu, Xinmei Tian,
Jiebo Luo, and Tao Mei. Gaussian temporal aware-
ness networks for action localization. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 344-353, 2019. 1

Zhiwu Qing, Ziyuan Huang, Xiang Wang, Yutong
Feng, Shiwei Zhang, Jianwen Jiang, Mingqian Tang,
Changxin Gao, Marcelo H Ang Jr, and Nong Sang.
A stronger baseline for ego-centric action detection.
arXiv preprint arXiv:2106.06942, 2021. 1, 3, 4

Zheng Shou, Jonathan Chan, Alireza Zareian,
Kazuyuki Miyazawa, and Shih-Fu Chang. CDC:
Convolutional-de-convolutional networks for precise
temporal action localization in untrimmed videos. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 5734—
5743,2017. 1

Karen Simonyan and Andrew Zisserman. Two-
stream convolutional networks for action recognition
in videos. In Adv. Neural Inform. Process. Syst., pages
568-576, 2014. 3

Mengmeng Xu, Chen Zhao, David S Rojas, Ali Tha-
bet, and Bernard Ghanem. G-TAD: Sub-graph local-
ization for temporal action detection. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 10156-10165,
2020. 1

Chenlin Zhang, Jianxin Wu, and Yin Li. Action-
former: Localizing moments of actions with trans-
formers. arXiv preprint arXiv:2202.07925, 2022. 1,
2,3

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu,
Xiaoou Tang, and Dahua Lin. Temporal action detec-
tion with structured segment networks. In Int. Conf.
Comput. Vis., pages 2914-2923, 2017. 1



